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Abstract. We take a step towards a more realistic modeling of personal
digital signatures, where a human user, his mobile equipment, his PC and
a server are all considered as independent players in the protocol, and
where only the human user is assumed incorruptible. We then propose a
protocol for issuing digital signatures on behalf of the user. This protocol
is proactively UC-secure assuming at most one player is corrupted in
every operational phase. In more practical terms, this means that one
can securely sign using terminals (PC’s) that are not necessarily trusted,
as long as the mobile unit and the PC are not both corrupted at the
same time. In other words, our solution cannot be broken by phising or
key-logging via the PC. The protocol allows for mobile units with very
small computing power by securely outsourcing computation to the PC
and also allows usage of any PC that can communicate properly. Finally,
we report on the results of a prototype implementation of our solution.

1 Introduction

When cryptographic protocols make use of digital signatures, this is usually
described in the cryptographic theory literature by saying something of the fol-
lowing form: “Player Pi signs the message m using his secret key ski, and sends
m and the signature σi = Sski

(m) to player Pj”.
While this may be a convenient abstraction in some cases, it hides some

details that are often very important in practice: in real life a “player” is usually
not really a single entity but consists in fact of a human user as well as one or
more computing devices he uses in order to store the key and issue the signature.
Each of the devices could be corrupted by an adversary without the user being
dishonest. In such a case, the theoretic model above would have to consider the
entire “player” to be corrupt and would conclude that we can now no longer
protect the secret key. However, in real life, it is of obvious interest to protect
the user, even if some of his equipment is corrupt.

A well known example of this is the so called man-in-the-middle (or man-in-
the-browser) attack which in the context of signatures takes the form of showing
the user a message on screen that he would approve, while at the same time
trying to have the secret key applied to a different message. If the user’s secret
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key resides on his PC, protected say, by encryption under a password, a man-
in-middle attack is always possible if the PC is corrupt.

In this paper, we first propose a model that we believe reflects in a more
realistic way the issues arising when a private person wants to issue digital
signatures using current technology. The main players are: a human user U , a
mobile unit M , a terminal T , and a server S. In practice, M could be a PDA, a
cell-phone or special-purpose device, T could be a PC (but not necessarily the
user’s own machine), and S could be some server where the user has an account.
S could be the user’s own machine, or it could be run by a company handling
many users – the only assumption we make is that S is on-line whenever a
signature is to be issued. In this model, only the user is assumed incorruptible.

We assume that T can interact with U in a standard way via keyboard and
screen. M has a screen where it can show a message to be signed and may receive
an OK or a reject from the user.

In practice, we would like our solutions to be mobile, i.e., any machine can
in principle be used as T , so we therefore consider only protocols where no user
specific key material is stored permanently on T . Another practical issue is that
a mobile handheld unit can easily be lost or stolen, and it should be possible to
securely replace it without having to generate keys (and issue certificates) again.
This requires our solution to be secure against an adversary who first steals M
and later breaks into T or S.

This issue makes it natural for us to aim for proactive security in the UC
model. In proactive security, first introduced in [17], one divides time into opera-
tional phases, interleaved with (short) refreshment phases. In operational phases,
the system provides normal service, while refreshment phases are typically used
to update key material using fresh randomness. The adversary is assumed to
only corrupt a certain number of players in every operational phase, but the set
of corrupted players can be different in different phases, meaning that all players
may have been corrupt at some point, and the system must still be secure. Our
(adaptive) adversary may in each operational phase actively corrupt at most one
of M,T, S. The adversary mentioned above who first steals M and later breaks
into T or S can be modeled in the proactive framework as an adversary who
corrupts M in one operational phase and T or S in the next. Note also that
T models any machine(s) that the user U uses as terminal. So if U in real life
first uses an untrusted terminal in some Internet cafe and then returns to an
uncorrupted PC, this means in our model that T is first corrupted and then
becomes honest again.

We stress that our protocols are secure, even if corruption does not take the
form of loss of a device: whenever our system is operational, it is secure if the
adversary has corrupted at most one of M,T and S, even if the user is not aware
of the corruption. In particular this means we are secure against phising or key-
logging since this corresponds to corruption of T . On the the other hand if we
know that M or S have been corrupted, we can make the system operational
again, by replacing e.g., a lost M by a new uncorrupted device and restoring the
key from a backup.



We model this by introducing a new player, a database, D. This player is
only active in the refreshment phase and is used to restore data held by S that
could have been erased or corrupted by an active attack. We allow the adversary
to corrupt D passively. In practice, we think of D as run by the same party
who runs S, and as such the introduction of D models the assumption that
the server’s organization is able to ensure a backup that is reliable, but not
necessarily secret.

The functionality we aim to implement is basically the standard UC func-
tionality for secure signatures, except that the adversary is allowed to stop a
signature from being generated 1, and a message is only signed if the user ap-
proves it. We then propose a protocol that is secure in this model. The protocol
has the following properties:

– To execute the protocol, a user first needs to form the message m to be signed
while interacting with T (one may think of using machine T to buy something
on the net, where m is a payment order). To sign, he first authenticates
himself towards S (typically by entering his log-in data on T ), and second
he is shown on M ’s screen the message m and must in response tell M “OK”
or “reject”.

– To execute the proactive refreshment phase, a user just has to update his
log-in data for S, and if M is a new mobile unit (a replacement for a stolen
one), he must enter a special code on M (this can be done without many
key strokes, e.g., using the camera in a mobile phone to scan a 2-d bar code)

– The protocol can produce as output standard hash-and-sign RSA signatures,
compatible with existing PKI’s.

– The protocol allows M to use only very little computing power. We can
securely outsource most of the computation to T , so that for each signature,
M only has to evaluate one pseudo random function and do one addition of
large numbers. This is useful if M is a cheap special-purpose device, or if
one wants to run a high-level language implementation on M - this allows
to cover many types of mobile phones using pure Java, for instance, but it
will typically be much slower than device specific code.

– If desired, the protocol can keep the message to be signed secret from S
with no loss of efficiency. Note that this can be desirable for privacy related
reasons, but could also be undesirable if one wants S to keep a log of what
was signed.

On the technical side, we start by borrowing a standard technique from
threshold signatures where we share the secret RSA exponent additively between
M and S. We then augment this with a new technique allowing the outsourcing to
T mentioned above. We also propose an extension of the proactive security model
by introducing two kinds of refreshment protocols: one that is done routinely with
no other user intervention than a change of password, and one that is invoked in
case an attack has been detected, e.g., M has been lost or stolen or a virus attack
1 It is easy to see that we cannot avoid this in a scenario where only M and S can

store key material on-line and either of them may be corrupted.



was detected in S. In such cases we may have lost the information stored on M or
S, which means that the secret key is effectively lost as well. We therefore need
to design a way to use back-up information stored off-line to securely reestablish
the secret key. Finally, keeping the signed message secret from S can be done
using standard blinding techniques [8].

In the final part of the paper, we report on results from a prototype implemen-
tation of our protocol. In the prototype M was a mobile phone, running a Java
application while communicating with T (a PC) via Bluetooth. T then commu-
nicates with S via the Internet and SSL. The results show that our outsourcing
technique can give a significant speedup, and provide a far better experience for
the user.

1.1 Related Work

We are not aware of any previous work that attempts to model our scenario
in the UC framework. However, the idea of using a personal (mobile) device to
improve security in practice has been studied in several previous papers. In [18],
Parno et al. use a mobile phone to set up secure SSL/TLS connections and in
[15], Mannan and Oorschot use a personal device to improve security of password
authentication. Both solutions basically aim to do user authentication with im-
proved security, in particular to protect against key-logging and phising. In [20],
Weigold et al. use a trusted mobile USB device with a display and two buttons
to improve security of online services such as Internet banking. All communica-
tion between the used PC and the server is routed through this trusted device,
where the user has to accept sensitive transactions. [15, 20] also contains a good
overview of other existing anti-phising techniques and their properties. Finally,
there are many examples of using secure devices for transaction authentication,
see [2, 13], for instance.

The main difference to our results is that the previous works need to assume
that the personal device M is uncorrupted (malware-free), while our solution
is secure even if M is corrupt, as long as S, T are honest, due to the sharing
of the key between M and S. Also, previous works typically does not consider
proactive techniques.

As for existing cryptographic techniques, previous literature considers several
types of solutions that protect a secret signature key, even if one or more entities
are corrupt. A first such technique is known as Threshold Signature Schemes,
where the secret key is shared among a set of entities called signature servers.
One can then have protocols that guarantee security if a majority of servers
remain honest. A large body of literature exists on threshold signatures see, e.g.,
[1, 9, 12, 19]. In these protocols the signature servers play symmetric roles, i.e.,
they all execute essentially the same program and each server is assumed to be
equally hard to break into (hence the honest majority assumption). Protocols
for threshold signatures usually assume that the honest servers already agree on
the message to be signed and take it from there without considering how such
an agreement would be reached in practice.



Therefore, standard threshold signatures are not immediately applicable in
our case where a private citizen wants to use digital signatures: he may store
key material in different devices with completely different security properties,
for instance, on a mobile unit such as a PDA or a cellphone, or on a server.
Also, the idea that all players should agree on the message to be signed, does
not really make sense here: we clearly want that only the user decides, and only
messages approved by the user get signed. It is not even clear that we want all
players to know the messages signed. If a server handling many users is involved,
it may be undesirable for privacy reasons that the server knows what is signed.

A second related class of solutions is known as Key Insulated and Intrusion
Resilient signatures [11, 14]. In a nutshell, this model and ours are incomparable,
but we believe that our approach is the more realistic of the two.

In more detail, while we try to improve security against key exposures by
requiring participation of several entities, KI/IR signatures insist that one entity
that they call “the user” can sign on its own. Those schemes then instead try to
limit the effect of key exposures, by making the users private key valid only for
a certain period. When a period expires, the secret key must be updated using a
message from a second entity, called the key base. Security properties generally
hold assuming that user and key base are not simultaneously compromised, so
the two trust models are comparable in that only one entity at a time is assumed
corrupt. The properties obtained are different, however: If the assumption on
our adversary holds, no signature can be generated other than those the user
approves, while compromising the user in KI/IR signatures allows generating
false signatures in the current period. On the other hand, KI/IR signatures may
retain forward security even if both units are compromised in the same period.

The known KI/IR signatures schemes are specially engineered to get the
desired security properties. Therefore, certification authorities and receivers of
signatures must be aware of the scheme and its special properties to use it. Our
scheme outputs completely standard hash-and-sign RSA signatures and so it can
co-exist under the same PKI with any other solutions for storing the secret key.
This is a very important feature for such a scheme to be useful in a real-life
application. A final comment is that existing work on KI/IR signatures assumes
that the “user” holds and uses a secret key, and hence ignore the problems
stemming from the fact that in real life the secret key must of course be held
and operated by some device that is separate from the human user.

2 Security Model

Traditional formal models of digital signatures, e.g., the one described by Canetti
in the description of the UC framework [6], are models of the computer used
during signature generation and its security. Intuitively, the security we aim for
is different, namely: Only messages accepted by the human user should be signed.

Modeling human behavior in the UC framework is not an obvious task. Mod-
eling the human ability to decide whether a message should be accepted or re-
jected would result in an extremely rough approximation, and make our model



unclear. Instead we let the environment Z decide by sending acceptable messages
to the model of the human user U , and a protocol is deemed secure if it only
outputs signatures on messages that were given to U by Z. Since human users
cannot calculate digital signatures and therefore rely on corruptable computing
equipment, in our case the terminal T , the output of our ideal functionality is
output through T .

The ideal functionality for our mobile signatures FM-SIG (Fig. 1) is an exten-
sion of the functionality FSIG by Canetti [6, Section 7.2.1]. The signer, player
S in FSIG has been split into: U , S, M and T in our protocol, while the veri-
fier V is the same in both protocols. FM-SIG differs from from FSIG in that: 1)
The message m to be signed has to be sent to U and 2) The adversary is able
to stop the generation of a signature (in the model, he can do so by stopping
delivery of output from FM-SIG). The main idea behind FM-SIG is to not specify
a particular signature algorithm, but to keep track of messages that have been
submitted for signing and accept only these messages as signed. This is the rea-
son for the signature verification part of FM-SIG, which at first may seem a bit
counter-intuitive.

Ideal functionality FM-SIG

Key Generation: Upon receiving a value (KeyGen, sid) from U , verify that sid =
(uid, sid′) for some valid uid and sid′. If not then ignore the request. Else, hand
(KeyGen, sid) to the adversary S . Upon receiving (Algorithms, sid, s, v) from S ,
where s is a description of a PPT ITM, and v is a description of a deterministic
polytime ITM, output the message (VerificationAlgorithm, sid, v) to U .

Signature Generation: Upon receiving a value (Sign, sid,m) from U , let
σ ← s(m), and verify that v(m,σ) = 1. If so, send a public delayed output
(Signature, sid,m, σ) message to T , and record the entry (m,σ) when the signa-
ture has been outputted. If v(m,σ) 6= 1 output ⊥ to T .

Signature Verification: Upon receiving a value (Verify, sid,m, σ, v′) from V ,
do: If v′ = v, v(m,σ) = 1, and no entry (m,σ′) for any σ′ is recorded, then output
an error message to U and halt. Else, output (Verified, sid,m, v′(m,σ)) to V .

Fig. 1. Ideal functionality for “secure mobile digital signatures”, based on FSIG in [6].

3 Protocol Securely Realizing FM-SIG

The main player in our protocol is the human user U . The main idea behind the
protocol is to protect the user from a corrupt terminal or a corrupt mobile unit
by letting him accept the message to be signed on both the terminal and on the



mobile device; and to ensure that the signature cannot be generated unless both
units received an accept from U . This can be implemented by secret sharing
the private exponent d of the user’s private key, with a simple additive secret
sharing.

Secret sharing: The following additive sharing scheme is used to secret share
the user’s secret RSA key sk = 〈d,N〉: The private exponent d is shared to a
uniform randomly chosen d1 and a value d2 s.t.:

d ≡ d1 + d2 mod ϕ(N) (1)

Hence, for any m, we have:

md mod N = md1md2 mod N (2)

Note that (2) still holds if the addition in (1) is done over the integers.
By giving d1 to the mobile device M and d2 to the server S, a simple protocol

realizing FM-SIG can be implemented. In this protocol the message, if accepted
by the user on the terminal T is sent to M and to S. Then M shows the message
on its screen and will sign the message with its exponent share if the user accepts
the message. S will sign the message with the other exponent share if the correct
password is typed into T and sent to S. Finally, T can assemble the complete
signature by multiplying the two “half signatures”.

This protocol, however, requires M to do a full scale exponentiation. This
is problematic because we want to include cases where M is a special purpose,
cheap and small device, or where the software running on M is high-level code
only, for portability (such as pure Java on a mobile phone). The Chinese Re-
mainder Theorem (CRT) method2 often used to speed up RSA exponentiation
cannot be used here, since this would reveal the factorization of N to the mobile
device. Alternatively, we could make M ’s exponent share be a number (much)
smaller than d. This would speed up M ’s computation, but would reveal signifi-
cant information to S about d. We do not know if this is secure, but we strongly
suspect it is not. We therefore propose to exploit the fact that T is likely to have
much more computing power than M . Doing this requires some changes in the
protocol, as explained in the following section.

3.1 Protocol πM-SIG, for Computationally Limited M

πM-SIG assumes keys are set up beforehand, this is done by using an ideal func-
tionality FKeyGen (Fig. 2) for generation and distribution of keys and password.
Because the signatures generated follow existing standards, verification is nor-
mal RSA signature verification without any communication involved. This means
that the main part of πM-SIG is generation of signatures.

2 For a description of the CRT speedup method see [3, 5.2]



Key Generation FKeyGen Will generate a password pwd for the user, generate
keys, and share the user’s private key. After pwd and keys have been generated
they are distribute to the respective players.

Ideal functionality FKeyGen

Upon receiving a value (KeyGen, sid, κ) from player U , if sid = (uid, sid′) for some
valid uid; then generate a password pwd, and a pair of RSA keys (sk = 〈d, p, q〉, pk =
〈e,N〉) with security parameter κ, and compute:

dM ∈R [1, ϕ(N)− 1]

dS ← d− dM mod ϕ(N)

k ∈R {0, 1}
κ

Send 〈dM , k,N〉 to M , 〈dS , k, pwd, e,N〉 to S, pwd to U and 〈e,N〉 to the adversary
and halt.

Fig. 2. Functionality FKeyGen. Generating keys and a password for the user.

Signature Generation When U receives a value (Sign, sid,m), m is forwarded
to T together with the password pwd, then T starts a signing protocol where
U is asked from M if mM should be signed. U will accept message mM from
M iff mM = m. Before the formal definition of πM-SIG we need to define some
components of the protocol.

Definition 1. H(m) denotes the hashing and padding applied to the message m
before the exponentiation is done in the used RSA signature scheme.

Hashing and padding is needed to make RSA signature schemes secure against
chosen plaintext attacks, and is therefore already used in most standards. Our
protocol is secure no matter how H works, as long as combining H and RSA
results in a secure signature scheme. Hashing can also give some amount of pri-
vacy because the server only needs to see H(m) and not m itself. If desired,
blinding can be applied to ensure the users privacy unconditionally, see section
6. If logging is desired on the server, the server can do the hashing and padding
and m itself can be sent around in the protocol.

Definition 2. Fk(·) denotes a secure pseudo-random function with κ̃ + κ-bit
output and key k, with κ̃ being the length of the RSA keys. More precisely, a
polynomial time bounded adversary who gets oracle access to either Fk() or a
random function cannot distinguish the two alternatives with an advantage that
is non-negligible (in the length of k).

An overview of the protocol can be found in Fig. 3. In case of errors during
execution of the signing protocol, players communicating with the terminal T will



send ⊥ to T and T will then stop the protocol and return ⊥ to the environment
Z. The protocol is executed the following way: First the message m is sent to
the user U from Z, and U sends m to T together with pwd. T will now send m
to the mobile device M . M sends mM (mM ← m) to U and U returns (accept)
if mM = m, else U rejects and ⊥ is returned to M and forwarded to T . If U
accepts, M calculates δM and sends δM to T .

δM ← Fk(H(m)) + dM (3)

The value δM is a blinding of the key share dM known to M . Because k is
unknown to T , T can do the exponentiation without gaining knowledge of dM
(the blinding is later removed by S).

When T receives δM , T calculates σM and H(m) and send these values and
pwd to S.

σM ← H(m)δm mod N (4)

When S receives σM , H(m) and pwd it checks if pwd is correct, if not ⊥
is sent back to T . Else σS (6) and σ (7) are calculated and S checks if σ is a
valid signature of H(m), if this is the case σ is sent back to T , if not ⊥ is sent
back. Note that sending σM to S lets S calculate and verify σ, and thus indirectly
check that m has been accepted by U through both T and M . The protocol might
be secure without this check, however, our proof requires it. Furthermore when
we later extend the protocol to be proactive, this check make some recoveries
simpler and thereby more user friendly.

δS ← dS − Fk(H(m)) (5)
σS ← H(m)δS mod N (6)
σ ← σM × σS mod N (7)

= H(m)dM+Fk(H(m))+dS−Fk(H(m)) mod N (8)
= H(m)d mod N (9)

Communication: The model we use assumes communication to be secret from
the adversary unless he has corrupted one of the communicating parties. The
real-life justification for this differs between the different communication chan-
nels used. For key generation the ideal functionality FKeyGen is used. Formally,
communication with ideal functionalities is done over perfect secure channels
and the functionality specifies what to leak to the adversary. FKeyGen leaks the
public key and the fact that keys have been generated. FKeyGen is thought of
either: as a trusted third player, in which case secure encrypted communication
is a reasonable assumption; or alternatively as a protocol doing secure shared
key generation e.g., [4], in which case communication to the protocol is done
locally.

During signature generation different communication channels are used, these
channels are modeled by an ideal functionality “Secure message transmission”
FSMT delivering the message n and leaking the length of n to the adversary. For



T {}

U {pwd}

M {dM , k} S {dS , k, pwd}

V {pk}

1) m

2) 〈m, pwd〉

3) m

4) mM

5) Accept/⊥

6) δM/⊥

7) 〈H(m), σM , pwd〉

8) σ/⊥

9) 〈m,σ〉

1′) 〈m′, σ′〉 2′) 1/0

Fig. 3. Overview of the signing phase in πM-SIG. For simplicity sid is left out of all mes-
sages in this overview. Values sent to the players during key generation are presented
after the name of the player.

a concrete formal definition of FSMT see [6, section 6.3]. Communication that
involves U models what the user sees and types on the terminal or mobile device
and is therefore assumed secure against adversaries located physically away.

Communication between T and S is done over a cryptographically secured
channel (but it only has to be secure if T and S are honest). This can be done
using SSL/TLS if an appropriate public-key infrastructure is in place, but a
password-based key exchange such as SRP or a password-based cipher suite
for TLS [5] is a more natural and secure solution (as this avoids problems like
selection of the right certificate to use for obtaining S’s public key).

For communication between M and T , there are two possible justifications
for assuming it to be secure: 1) Communication happens over a secure connec-
tion, this could be via USB cable or a connection where security is based on
cryptography; the latter case can be feasible even if M is computationally weak,
namely if RSA with a small public exponent is used, or in case we use a secure
Bluetooth protocol with pairing. 2) We could also base ourselves on the fact that
the communication only has to be secure if M,T are honest and S is corrupt.
Since S is typically located physically away from T and M , one may decide that
unencrypted communication is good enough if done such that it can only be
picked up in physical proximity.



4 Protocol πM-SIG UC-realizes FM-SIG

In this section we will prove that under appropriate assumptions πM-SIG UC-
realizes FM-SIG. The security of πM-SIG is obviously based on the security of the
underlying RSA signature scheme, hence we need:

Assumption 1. With proper choice of hashing and padding function H(·), the
underlying RSA signature scheme: Sig(m) = H(·)d mod N is secure against
adaptive chosen plaintext attacks.

Our protocol clearly needs that U can securely authenticate himself towards
S. For concreteness, we have specified that this happens using a password pwd,
but in fact any authentication method could be used, as long as it is secure
against an adversary that does not corrupt S or T . We have chosen to leave
out the details of the authentication and its security by simply assuming that
the adversary cannot with significant probability get the password except by
corrupting a player who has seen it. Actually, since the adversary has to do
online attacks if trying to guess pwd, and the server implementation can take
this into account, this assumption may be justifiable. Other ways and discussions
about modeling password security in the UC framework can be found in [7].

Assumption 2. If the adversary does not corrupt S or T , he can produce the
correct password with only negligible probability.

Theorem 1 (πM-SIG UC-realizes FM-SIG). Under assumptions 1 and 2 and
if Fk is secure, πM-SIG UC-realizes FM-SIG with respect to adaptive and active
adversaries, corrupting at most one of the players: T , M or S.

Proof. For any real world adversary A interacting with πM-SIG, and corrupting
at most one of the players: T , M or S, we need to show that there exists a
simulator S interacting with FM-SIG, such that no PPT environment Z can
distinguish A interacting with πM-SIG from S interacting with FM-SIG. The
proof of this is done in two steps: First we present an S capable of simulating
πM-SIG for all A, except if Z is able to produce a forged signature (i.e., a signed
message not accepted by the user). Next we present a reduction, which, given a
Z capable of forging signatures, can use Z to forge “normal” RSA signatures,
and thereby breaking assumption 1. Consequently, simulation only fails with
negligible probability.

Simulating πM-SIG The simulator S needs to simulate the adversary’s view
of πM-SIG, when the players forwards all input to FM-SIG instead of running
πM-SIG. S has to simulate the leakage (i.e., the length of the sent data) of
communication. If a player is corrupted, S in addition has to simulate the view
of this player. S will do this by generating keys following the algorithm of
FKeyGen and sending the expected keyshares to corrupt players. Since it knows
all secret keys, it can now simulate πM-SIG by simply running the protocol. It
is evident that verification of signatures is the only way for Z to distinguish



simulation from the real protocol. Invalid signatures will be rejected both in
the real and the ideal world, genuine valid signatures will be accepted in both
worlds. However, forged signatures will only be accepted in the real world since
FM-SIG enforces unforgeability. Thus S simulates πM-SIG perfectly except if the
environment Z is able to produce a forged signature.

Reduction To prove that πM-SIG provides unforgeability, we construct a re-
duction that - if πM-SIG is insecure - can beak the underlying RSA signatures
scheme, and thereby violate assumption 1. The idea is that if there exist a PPT
environment Z that with nonnegligble probability can forge signatures, based
on information gained by controlling a corrupted player; we would be able to
use Z to forge an RSA signature in polynomial time. The reduction RedRSA is
formally described in Fig. 4. A forge of an RSA signature is modeled by giving
RedRSA access to an RSA oracle ORSA. ORSA will return a public RSA key to
RedRSA when prompted, and sign messages when RedRSA sends them. We say
that RedRSA has forged an RSA signature successfully, if RedRSA can output a
signature on a message that has not been signed by ORSA.

We need to prove that communicating with RedRSA is indistinguishable from
πM-SIG, so Z will behave the same way in both cases. It is evident that simulating
communication (i.e., leak the length of data sent) can be done.

If A corrupts M , Z learns the random variables k and dM . k has the same
distribution in both cases, while dM is uniform random in [1, ϕ(N)−1] in πM-SIG

and dM in RedRSA is uniform random in [1, N ]. The two distributions are, how-
ever, statistically close. In both cases Z also learns all messages m signed so far,
and since neither M or T has been corrupted, U has accepted them all. So all
input is indistinguishable when corrupting M .

Both U in πM-SIG and RedRSA acting as U will accept only a genuine message
m; furthermore both in RedRSA and in πM-SIG sending δM ≡ dM + Fk(H(m))
mod ϕ(N), but nothing else, to T will result in a signature. This proves that
controlling the output of M does not give Z the ability to distinguish between
πM-SIG and RedRSA.

If A corrupts T , Z learns pwd, k, all signed messages m and there signatures
σ, the distribution of these are equal in the two cases. In addition Z learns
δM . In RedRSA δM is uniformly chosen in {0, 1}eκ+κ, whereas in πM-SIG, δM =
dM +Fk(H(m)). By definition (2) Fk is indistinguishable from a uniform chosen
κ̃+κ bit value, and since dM is κ̃ bits long, the two distributions are statistically
close.

When T sends a message m to M , M will in both cases return a indistin-
guishable δM if m did originate from U , while ⊥ is returned to everything else. T
sending S a correct triple 〈H(m), σM , pwd〉 will in both cases result in S returning
a signature σ on m, the same is the case with a correct triple 〈H(m′), σ′M , pwd〉
from an earlier signed message m′. On the contrary in RedRSA T would get ⊥
back, if a correct triple 〈H(m̄), σ̄M , ¯pwd〉 of a not yet signed message m̄ is send
to S, whereas S in πM-SIG would produce a signature σ̄ of m̄. Since we assume
that Fk is secure (definition 2), the probability of A producing a correct δM and



The reduction RedRSA

RedRSA takes the following inputs: an environment Z; the security parameter κ, the
length of RSA keys eκ and an RSA oracle ORSA.

Key Generation: Upon receiving (KeyGen, sid) from U , verify that sid = (uid, sid′)
for some valid uid and sid′. If not then ignore the request. Else, ask ORSA for the
public RSA key pk = 〈e,N〉 and output pk as (VerificationAlgorithm, sid, v(pk))
public delayed to U , v(pk) being the verification algorithm, with public key pk.

Signature Generation (all honest): Upon receiving (Sign, sid,m) from U . Send
(Sign, sid,m) to ORSA, wait for a signature σ of m from ORSA, store 〈m,σ〉 and
output (Signature, sid,m, σ) to T .

Signature Verification: Upon receiving (Verify, sid,m, σ, v′) from V , do: If v′ = v,
v(m,σ) = 1, and no entry m is recorded, then output (RSA-Broken,m, σ) and halt.
Else, output (Verified, sid,m, v′(m,σ)) to V .

Corruption of M : Pick dM ∈R [1, N ], k∈R{0, 1}
eκ+κ and send dM , k and all stored

messages m as simulated input to M . From now on when Z sends m to U , send m
to M . If M thereafter sends m′ 6= m to U , return ⊥ to M , if M on the other hand
sends m to U , return (Accept) to M . If M sends δM ≡ dM + Fk(H(m)) mod ϕ(N)
to T after having received m, output (Signature, sid,m, σ) to T , else output ⊥ to T .

Corruption of T : Pick pwd as FKeyGen would, and from all stored pairs 〈m,σ〉
calculate the simulated input (m, pwd, δM , σ) of T :

δM ∈R{0, 1}
eκ+κ (10)

When Z sends m to U , send 〈m, pwd〉 to T . If T now sends m′ 6= m to M , return
⊥. If m′ = m return a new random δM (10) to T . If T now sends 〈H(m), σM , pwd〉,
with σM = mδM mod N to S return the signature σ of m. If T at any point sends a
correct triple 〈H(m′), σ′M , pwd〉 of a previous signed message m′, return the signature
σ′ for m′. If T sends anything else to S return ⊥ to T .

Corruption of S: Pick dS ∈R [1, N ], k∈R{0, 1}
eκ+κ and pwd as FKeyGen would. From

all stored pairs 〈m,σ〉 calculate the simulated input (dS , k, H(m), pwd, σM ) of S:

σM ← σ ×
“
H(m)(dS−Fk(H(m)))

”−1

mod N (11)

When Z sends m to U , send 〈H(m), σM , pwd〉 to S, if σ is returned output
(Signature, sid,m, σ) to T , else output ⊥ to T .

Fig. 4. Reduction from forgery by interacting with πM-SIG to forgery of normal RSA
signatures.

thereby a correct σM is, however, negligible. All other data send from T to S will
in both cases result in ⊥ in return. So corrupting T will not let Z distinguish.

If A corrupts S, Z learns pwd, the hash values H(m) and the signatures σ
of all signed messages, the distributions of these are equal in both cases. Z also
learns σM of the signed messages which has been constructed different in the



two cases; however, if H(m)(dS−Fk(H(m))) has an inverse3 mod N then:

σ ≡ σM × σS mod N (12)

⇒ σM ≡ σ × σ−1
S ≡ σ ×

(
H(m)(dS−Fk(H(m)))

)−1

mod N (13)

So Z cannot distinguish RedRSA from πM-SIG by the input to S. If S sends a
correct signature σ this signature is the output of both RedRSA and πM-SIG and
anything else results in ⊥ in both cases.

This proves that under the assumptions 1, 2 and that Fk is secure no PPT
environment can forge signatures, and thereby we have proven Theorem 1.

5 Proactive Security

As pointed out in the introduction, proactive secure protocols contain alternating
operational and refreshment phases, where the latter are used to refresh the
stored key material.

One way to do refreshment is to update the user password and then reshare
d by adding a random value to one share and subtract the same value from
the other share. This solution is the Refreshment protocol described below, and
this does in fact give us proactive security. This may seem strange since the
adversary can do an active attack on M , for instance, and delete M ’s share of
the key. Then we can never issue signatures again, but formally speaking, this
is not a problem because our ideal functionality allows the adversary to stop
signatures from being generated. However, in the real world, we would want to
be able to get the system operational again, particularly in case M (e.g., the
users mobile phone) is lost or stolen. This can be thought of as a corruption of
M , where in addition it becomes known to the honest players that M has been
corrupted. If such an event happens, we can exploit the knowledge that M was
corrupted, to replace it by a new uncorrupted device and reestablish the key
sharing from a back-up. This is done in the alternative Refreshment* protocol
below.

5.1 Proactive Definition of Security

Technical details on how to model proactive security in the UC framework can
be found in [1] and [6]. We give a short summary here: As usual the adversary
may corrupt players (adaptively), but when a player is corrupted, the adversary
is not given the complete history of that player (contrary to the standard case),
only the history dating back to the start of the current operational phase. The
adversary may decide to leave a corrupted player when a refreshment begins, and
this player now again follows the protocol, starting from some default state. The
adversary may then corrupt a new player in the next operational phase, as long as
3 If not, we can construct a nontrivial factor of N, and thereby forge RSA signatures

of arbitrary messages.



the number of corrupted players stays below the specified threshold. Corruption
during a refreshment phase is not allowed or, better said, it counts as if the
involved player is also corrupt in both the previous and following operational
phases.

It is standard to let the environment decide when a refreshment phase begins
by sending refreshment as input to all honest players. Motivated by the above
discussion, we extend the model by allowing the environment to send either re-
freshment, signaling the start of a routine refreshment, or refreshment*, signaling
the start of a refreshment where a device has to be set up from scratch, but is
assumed honest. We assume that the environment only sends refreshment* if
this makes sense, that is when the adversary has left a player, and we therefore
can assume the players to be honest during the refreshment* phase. This models
the case where the mobile device was lost and a new, not yet corrupted one is
to be set up, or when a virus attack on the server has been detected, but after
clean-up and reboot, we believe the server is honest again.

5.2 Protocol πP-M-SIG, a Proactive version of πM-SIG

The ideal functionality we want to implement is FM-SIG, as in previous sections.
The protocol πP-M-SIG is a proactive version of πM-SIG. To be able to do re-
freshment* we introduce a new player D in the protocol. D is a database with
the property that the entry for user U only is writable during key generation,
therefore we only allow passive corruption of D. During key generation a backup
share of d is given to the human user, and during the refreshment* phase the
user has to send this share to the mobile device. The length of this share is
evidently beyond the capacity of information users can enter on a keyboard.
Nevertheless this can be solved by e.g., storing the share as a 2D barcode on
paper, and send it to M via a camera, if M is a camera equipped cellphone.
Another solution is to store the share on a USB-pen or similar. A third solution
is to give a short key to the user and generate the share pseudo-randomly from
the key. It is important to understand that the back-up share is erased from M
as soon as the refreshment is over, and the method is therefore secure under the
assumption that a fresh mobile device will stay honest in the short time it takes
the refreshment to complete.

Formal Description of πP-M-SIG Signature generation and verification is
handled in the same way as in πM-SIG.

Key Generation Like in πM-SIG key generation is handled by an ideal function-
ality, FP-KeyGen is defined as FKeyGen (Fig. 2) with the following extensions: First
to simplify4 our security proof we blind the sharing of d with d∆ ∈R [−2κN, 2κN ]
s.t. dS ← dS +d∆ and dM ← dM −d∆, blinding happens during the refreshment
phase, so the small expansion of the shares is not an issue. Second a backup
4 Blinding from start avoids treating the first operational phase as a special case.



sharing 〈d̂M , d̂S〉 of d is computed. d̂M is sent to U in addition to the values sent
by FKeyGen, and d̂S is sent to, and stored by D. This backup sharing is required
for refreshment*.

Communication Communication is done with the same assumptions as in
πM-SIG, with an extra secure line from S to M , which is used once during each
refreshment* phase. This line should either be thought of as provided by the
mobile phone network, if M is a cellphone, or a physical link between S and M ,
if M is some special purpose device.

Refreshment and Refreshment* The Refreshment protocol first does refresh
of k and resharing of d, see Fig. 5, and then pwd is updated using the protocol
in in Fig. 7. To check if we are indeed in a valid state, a “test-signature” can be
issued afterwards.

Refresh k, resharing of d

1. S does the following calculations (ESk denotes a semantically secure symmetric

encryption scheme, with message authentication and key k), and sends gref to M
through T :

knew ∈R{0, 1}
κ, d∆ ∈R [−2κN, 2κN ], gref ← ESk (knew, d∆) (14)

k ← knew, dS ← dS + d∆ (15)

2. M decodes gref with k and let k ← knew and dM ← dM − d∆.
3. Erasure: M and S erases d∆ and the old values of dM , dS and k.

Fig. 5. Refreshing dM , dS and k in the refreshment phase of πP-M-SIG.

The Refreshment* protocol first creates a new value of k and shares of d
from the backup, see Fig. 6. It then does the refreshment of pwd as in Fig. 7
using a blank password as the old value of pwd because the adversary might
have changed the password if he had control of S earlier.

A couple of remarks on the protocol for updating passwords: we append a
1-bit to the input of Fk since then no input used in refreshment can be equal to
inputs used in signature generation, so a corrupt T does not get Fk-values that
can be misused later. Using the string s to hide pwdnew is not strictly necessary
in our model - since we assume a secure channel from T to S when both are
honest, T could just send pwdnew. In practice, however, if the channel is set up
using password-based key exchange as discussed earlier, it is not secure if the
old password has been compromised, say, by an earlier attack on T . Using the
extra hiding under s solves this problem.



Restore k and shares of d from backup

1. D sends cdS to S. S chooses k∈R{0, 1}
κ and d∆ ∈R [−2κN, 2κN ], sets dS ←cdS + d∆ and sends 〈k, d∆〉 to M .

2. M sets k to the received value and sends (send-backup) to U .

3. U returns cdM to M and M sets dM ← cdM − d∆.
4. The protocol for refreshment of pwd (Fig. 7) is run, with old password pwd being

blank.
5. Erasure: M and S erases cdM , cdS , d∆ and the old values of dM , dS and k.

Fig. 6. Refreshment* phase of πP-M-SIG.

Refreshment of pwd

1. U starts by sending a request (refresh, pwd, pwdnew) to T .
2. T computes a challenge c ← H(pwd, pwdnew, r), and r∈R{0, 1}

κ, s∈R{0, 1}
` (`

is the length of pwdnew) and sends (ch-pwd, c), s to M .
3. M sends (ch-pwd?) to U , and U returns either ⊥ or (OK) to M .
4. If ⊥ was returned to M , ⊥ is forwarded to T , while in case of (OK), M calculates

a response ρ ← Fk(c|1), where (c|1) means c concatenated with a 1-bit, and
α = ESk (s). It sends ρ, α to T .

5. T sends (ch-pwd, pwd, pwdnew ⊕ s, α, r, ρ) to S.
6. S decrypts alpha and calculates pwdnew = (pwdnew ⊕ s) ⊕ s. If S accepts pwd,

and if ρ = Fk(H(pwd, pwdnew, r)), then S will set pwd← pwdnew.

Fig. 7. Refreshment of the password pwd in πP-M-SIG.

5.3 Security of πP-M-SIG

In this section we prove in theorem 2, the security of πP-M-SIG, however, we also
comment on, and emphasize some of the security properties of πP-M-SIG, since
not all are covered directly by the UC framework and theorem 2. The proof
of Theorem 2 is analogous to the one for theorem 1 and can be found in the
full version of this paper [10]. The only substantial change is that the reduction
showing that the protocol does not allow forgery of signatures, now needs to
simulate refreshment phases without knowing the secret key, which turns out
to be straightforward. Theorem 2 relies on our earlier assumptions, but also
requires a standard assumption of the security of cryptographic hash functions:

Assumption 3. For any PPT Turing machine A: If A is given H and y =
H(x), A can only with negligible probability return a x′ s.t. y = H(x′).

Theorem 2 (πP-M-SIG UC-realizes FM-SIG). Under assumptions 1, 2 and
3 and if Fk and ES are secure, πP-M-SIG UC-realizes FM-SIG with respect to
adaptive adversaries in the proactive model, where the adversary may corrupt
at most one of: M , T or S and D. Active corruption is allowed for all players
except D, which can be passively corrupted.



In the model we use here, U stores his backup share of d. It could be argued
that this is not realistic and we should extend the model with a separate player
DU modeling whatever back-up storage U is using. This is indeed possible, and
our protocol would still be secure in this extended model against an adversary
who may do corruptions as usual and in addition may corrupt DU passively,
provided he never corrupts other players in a way that would give him both
back-up shares (e.g., corrupting both D and DU would be forbidden). We have
omitted this for simplicity. Note that since we assume U is never corrupted, we
could in principle implement the back-up needed for refreshment* by giving U
the complete key d. However, this solution is clearly dubious since it stores the
entire secret key in a single location. Indeed, it is clearly insecure if we extend the
model with DU , which is why we prefer πP-M-SIG. Another advantage of πP-M-SIG

is that higher security during refreshment* can be implemented by using two
backup sharings. One sharing when S has been corrupt, but is honest again,
and an other sharing when M has been corrupt, but is recovered. This improves
security in a case where several adversaries work independently of each other,
but each adversary corrupts at most one player. Such a case cannot covered by
the standard model, where a single monolithic adversary is always assumed.

Comments on the usage of Passwords It should be emphasized that the
refreshment protocol of pwd in Fig. 7 can run without the rest of refreshment.
The reason for doing this is if the user suspects a corrupted terminal has been
used. To ensure that none other than the current used terminal T can change
the password during refreshment*, where a blank “old” password is used, a list
of onetime passwords can be generated during key generation and sent to U and
stored by D.

6 Blinding Messages

A well-known technique by Chaum [8] can be used to blind the messages to
be signed so that S learns no information whatsoever on what is signed. The
idea is that M , when it handles a message m, will choose a random r ∈ Z∗N
and compute b = H(m)re mod N , where e is the public RSA exponent. Note
that this can be feasible even for a computationally weak M if a small public
exponent is used. In the rest of the signature issuing, H(m) is replaced by b, and
the PRF-value needed for outsourcing is computed from b. The blinding factor
r is sent to T . Since the signature issuing process is otherwise unchanged, it
will eventually allow T to compute bd mod N = H(m)dr mod N , so by dividing
out r, T can recover the signature. On the other hand, S has only seen b which
reveals nothing about m since r was uniformly chosen.

7 Implementing a prototype.

We have formulated a cryptographic approach to improve the security and mo-
bility of the usage of digital signatures. If these improvements are to reach the



actual users in the real world, the cryptographic protocols has to be implemented
in a way that makes it attractive for real users to use them. Therefore we are
working together with experts in the field of “Human Computer Interaction”
on a prototype that implements the described protocols. This is still work in
progress, but the signature issuing phase of the protocol has been implemented.
The implementation is done in Java using the Bouncy Castle library [16] for
cryptographic tasks. We used a Sony Ericsson T850i cellphone to play the role
of M while T was a standard PC, speaking to M via Bluetooth, and to S via
SSL. We have verified that the signatures produced conform to the standard of
the nation-wide PKI OCES5 already in use in Denmark.

We observed that outsourcing the exponentiation from M to T gives a very
significant speedup. With 1024 bit keys, exponentiation on the phone takes
around 6 seconds. In a real use case, this makes the system seem heavy and
slow and gives the impression that improved security degrades the user friendli-
ness. Running the outsourcing protocol reduces the signature time to a fraction
of a second and makes it seem as if the signing happens instantly. Of course,
improved speed of exponentiation is possible by using native code instead of
Java. But apart from the fact that portability would suffer if we do this, it is
not clear that it would be enough: we would probably need to move to 2000 bit
RSA in a real system which might cost up to a factor of 8 in performance.

8 Conclusion, Future work and Acknowledgement

We have proposed a model for personal digital signatures that we believe reflects
reality better than previous proposals. We have proposed a protocol for signature
generation that remains secure even if the computing equipment used is partially
corrupt. Finally we have implemented the essential parts of the protocol and
verified that it is practical. The protocol still assumes key generation as a trusted
service, and in ongoing work we investigate methods for generating keys using
a secure distributed computation, that takes into account the computational
weakness of the mobile device.

We thank the anonymous PKC referees and Michael Steiner for comments
that helped us improve the paper substantially.
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